

Product Specification Sheet Model: MS2902

MS2900

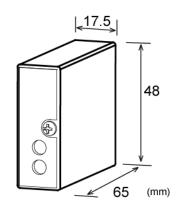
Chassis-Mount RTD Temperature Transmitter with Isolated Dual Output

DESCRIPTION

The MS2902 is a chassis-mount RTD temperature transmitter that supplies constant current to a three-wire RTD and converts its mV input signals into mutually isolated dual channel DC output signals.

- ∇ Features linearization and burnout protection.
- ∇ A multi-slot chassis provides ease of maintenance and high-density mounting.
- ∇ Input, output 1, output 2, and power circuits are all isolated from each other.
- Equipped with a fuse on the DC power line as standard.

ORDERING INFORMATION


Ordering Code	
MS2902-□ (□-])-8□□
[1] [2]	[3]

SPECIFICATIONS

POWER SECTION	
Power	24V DC±10%
Requirement	
Power	Better than ±0.1% of span per 10%
Sensitivity	change in supply voltage
Power Line Fuse	300mA fuse
Current	50mA max.
Consumption	

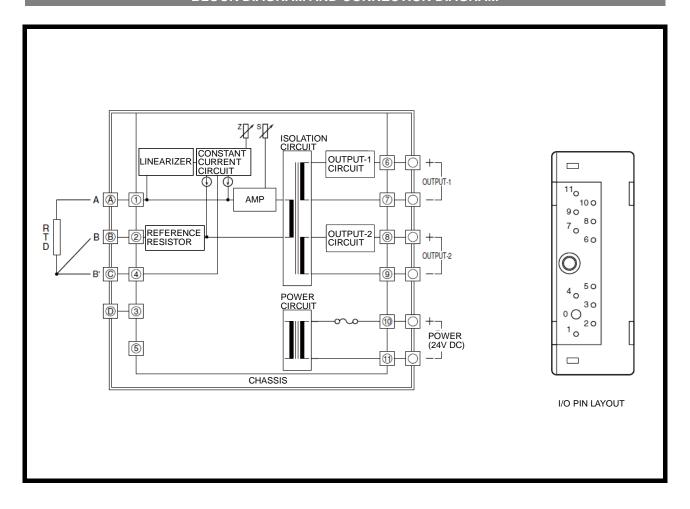
INPUT SECTION

JIS or other 3-wire RTDs Code
■ Pt 100Ω · · · · · · Pt100
■ JPt $100\Omega \cdots$ JPt 100
\blacksquare Other than those above ······ X
Specify an RTD standard (A) and
symbol (B) as indicated below:
X = A / B
Notes:
1. When a JIS symbol is specified, the
resistance table of the latest edition of
the relevant JIS will be used, unless
otherwise requested.
2. For other RTD types, submission of a
resistance table may be required.
Specify an input range in °C within the
range given in the resistance table.
Approx. 1mA with Pt for 0 to 100°C
200Ω max. per wire

Lead-Wire	Better than 0.1% of span per 5Ω
Resistance	
Sensitivity	

OUTPUT SECTION

<u>OUT OF SECTION</u>	
Output	Output 1 / Output 2 · · · · · Code
(Specify a code in	■ 1–5V DC / 1–5V DC · · · · · · V1
the field [3].)	■ 0–5V DC / 0–5V DC · · · · · · · · · V5
	■ 0–10V DC / 0–10V DC · · · · · · · · V6
	■ 1–5V DC / 4–20mA DC ·······C1
	Note: Combinations of two outputs are
	only available as shown above.
Allowable	Voltage output: 2mA max.
Output Load	Current output: 300Ω max.
Zero Adjustment	Approx. ±2% of span
	(Adjustable by front-accessible trimmer)
Span Adjustment	Approx. ±2% of span
	(Adjustable by front-accessible trimmer)
Burnout	Upscale
Protection	


PERFORMANCE

Accuracy Rating	Better than \pm (0.15% of span + 0.1°C) (at
	25°C±5°C)
Temperature	Better than ±0.2% of span per 10°C
Effect	change in ambient.
Burnout Drive	30ms max.
Time	
Standard	Approx. 2Hz-3dB
Response Time	
Isolation	Isolation between input, output 1, output
	2, and power.
Insulation	100MΩ min. (@ 500V DC) between
Resistance	input, output 1, output 2, and power.
Dielectric	Input / [Output 1, Output 2, Power]:
Strength	1500V AC for 1 minute (Cutoff current:
	0.5mA)
	Output 1 / Output 2 / Power: 500V AC for
	1 minute (Cutoff current: 0.5mA)
Surge Withstand	Tested as per ANSI/IEEE C37.90.1-1989.
Capability	
Operating	Ambient temperature: 0 to 55°C
Environment	Humidity: 5 to 90% RH (non-condensing)

Storage	−10 to 60°C
Temperature	
PHYSICAL	
Installation	Mounted in an optional chassis (RC2900).
Wiring	Wired to an optional chassis (RC2900).
External	W17.5 × H48 × D65 mm
Dimensions	
Weight	70g max.

MATERIAL	
Housing	ABS resin (UL 94V-0)
PC Board	Glass fabric, epoxy resin (FR-4: UL 94V-0)
Potting Agent	Polyurethane

BLOCK DIAGRAM AND CONNECTION DIAGRAM

